top of page

Троичные ЭВМ “Сетунь” и “Сетунь 70”

1956 г . по инициативе академика С.Л. Соболева, заведующего кафедрой вычислительной математики на механико-математическом факультете Московского университета, в вычислительном центре МГУ был учрежден отдел электроники и стал работать семинар с целью создать практичный образец цифровой вычислительной машины, предназначенной для использования в вузах, а также в лабораториях и конструкторских бюро промышленных предприятий. Требовалось разработать малую ЭВМ, простую в освоении и применениях, надежную, недорогую и вместе с тем эффективную в широком спектре задач.

 

Обстоятельное изучение в течение года имевшихся в то время вычислительных машин и технических возможностей их реализации привело к нестандартному решению употребить в создаваемой машине не двоичный, а троичный симметричный код, реализовав ту самую уравновешенную систему счисления, которую Д. Кнут двадцать лет спустя назовет быть может, самой изящной [1] и как затем стало известно, достоинства которой были выявлены К. Шенноном в 1950 г . 121.

 

В отличие от общепринятого в современных компьютерах двоичного кода с цифрами 0, 1, арифметически неполноценного вследствие невозможности непосредственного представления в нем отрицательных чисел, троичный код с цифрами -1, 0, 1 обеспечивает оптимальное построение арифметики чисел со знаком. При этом, не только нет нужды в искусственных и несовершенных дополнительном, прямом либо обратном кодах чисел, но арифметика обретает ряд значительных преимуществ: единообразие кода чисел, варьируемая длина операндов, единственность операции сдвига, трехзначность функции знак числа, оптимальное округление чисел простым отсечением младших разрядов, взаимокомпенсируемость погрешностей округления в процессе вычисления [3].

 

Троичная ЭВМ “Сетунь” [4, 5], опытный образец которой разработали, смонтировали и к концу 1958 г . ввели в эксплуатацию сотрудники отдела электроники, как показал опыт ее освоения, программного оснащения и многообразных практических применений, с исчерпывающей полнотой удовлетворяла всем предусмотренным заданием на ее разработку требованиям. Этот успех, с учетом того, что разработка троичной ЭВМ предпринималась впервые, проводилась немногочисленным коллективом начинающих сотрудников (8 выпускников МЭИ и МГУ, 12 техников и лаборантов) и была выполнена в короткий срок, явно свидетельствует о благодатности троичной цифровой техники. Ценой усложнения по сравнению с двоичными элементов памяти и элементарных операций достигается существенное упрощение и, главное, естественность архитектуры троичных устройств.

 

При минимальном наборе команд (всего 24 одноадресные команды) “Сетунь” обеспечивала возможность вычислений с фиксированной и с плавающей запятой, обладала индекс-регистром, значение которого можно как прибавлять, так и вычитать при модификации адреса, предоставляла операцию сложения с произведением, оптимизирующую вычисление полиномов, операцию поразрядного умножения и три команды условного перехода по знаку результата. Простая и эффективная архитектура позволила усилиями небольшой группы программистов уже к концу 1959 г . оснастить машину системой программирования и набором прикладных программ [6], достаточными для проведения в апреле 1960 г . междуведомственных испытаний опытного образца.

 

По результатам этих испытаний “Сетунь” была признана первым действующим образцом универсальной вычислительной машины на безламповых элементах, которому свойственны “высокая производительность, достаточная надежность, малые габариты и простота технического обслуживания”. По рекомендации Междуведомственной комиссии Совет Министров СССР принял постановление о серийном производстве “Сетуни” на Казанском заводе математических машин. Но почему-то троичный компьютер пришелся не по нраву чиновникам радиоэлектронного ведомства: они не обеспечили разработку серийного образца машины, а после того как он все-таки был осуществлен с использованием конструктивов выпускавшейся заводом машины М-20, не содействовали наращиванию выпуска в соответствии с растущим числом заказов, в частности из-за рубежа, а наоборот, жестко ограничивали выпуск, отклоняя заказы, и в 1965 г . полностью прекратили, причем воспрепятствовали освоению машины в ЧССР, планировавшей ее крупносерийное производство. Поводом для этой странной политики могла быть рекордно низкая цена “Сетуни” — 27,5 тыс., рублей, обусловленная бездефектным производством ее магнитных цифровых элементов на Астраханском заводе ЭА и ЭП, по 3 руб. 50 коп. за элемент (в машине было около 2 тыс., элементов). Существенно то, что электромагнитные элементы “Сетуни” позволили осуществить пороговую реализацию трехзначной логики на редкость экономно, естественно и надежно. Опытный образец машины за 17 лет эксплуатации в ВЦ МГУ, после замены на первом году трех элементов с дефектными деталями, не потребовал никакого ремонта внутренних устройств и был уничтожен в состоянии полной работоспособности.

 

Серийные машины устойчиво функционировали в различных климатических зонах от Одессы и Ашхабада до Якутска и Красноярска при отсутствии какого-либо сервиса и запчастей.

 

Благодаря простоте и естественности архитектуры, а также рационально построенной системе программирования, включающей интерпретирующие системы: ИП-2 (плавающая запятая, 8 десятичных знаков), ИП-3 (плавающая запятая, 6 десятичных знаков), ИП-4 (комплексные числа, 8 десятичных знаков), ИП-5 (плавающая запятая, 12 десятичных знаков), автокод ПОЛИЗ с операционной системой и библиотекой стандартных подпрограмм (плавающая запятая, 6 десятичных знаков), машины “Сетунь” успешно осваивались пользователями в вузах, на промышленных предприятиях и в НИИ, оказываясь эффективным средством решения практически значимых задач в самых различных областях, от научно-исследовательского моделирования и конструкторских расчетов до прогноза погоды и оптимизации управления предприятием [7]. На семинарах пользователей вычислительных машин “Сетунь”, проведенных в МГУ (1965), на Людиновском тепловозостроительном заводе (1968), в Иркутском политехническом институте (1969) были представлены десятки сообщений о результативных народнохозяйственных применениях этих машин. “Сетунь”, благодаря естественности троичного симметричного кода, оказалась поистине универсальным, несложно программируемым и весьма эффективным вычислительным инструментом, положительно зарекомендовавшим себя, в частности, как техническое средство обучения вычислительной математике более чем в тридцати вузах. А в Военно-воздушной инженерной академии им. Жуковского именно на “Сетуни” была впервые реализована автоматизированная система компьютерного обучения [8].

 

Троичная система счисления основана на том же позиционном принципе кодирования чисел, что и принятая в современных компьютерах двоичная система, однако вес i -й позиции (разряда) в ней равен не 2 i , а 3 i . При этом сами разряды не двухзначны (не биты), а трехзначны (триты) — помимо 0 и 1 допускают третье значение, которым в симметричной системе служит -1, благодаря чему единообразно представимы как положительные, так и отрицательные числа. Значение n -тритного целого числа N определяется аналогично значению n -битного:

© 2016 Назаров Андрей Михайлович

bottom of page